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EXTENDED ABSTRACT

In this work, we consider the problem of system iden-
tification based on a sparse sampling system. Unlike stan-
dard techniques for system identification which require the
sampling rate to be at or above the Nyquist rate, we use
sparse sampling techniques to identify the system at sub-
Nyquist sampling rates. We propose a novel algorithm for
simultaneous estimation of sparse signals along with system
identification using the theories of finite rate of innovation
(FRI) sampling [3], [1]. Specifically, we will divide the esti-
mation problem into two stages where we first assume that the
input sparse signal is known, so that the problem simplifies to
a system identification problem only and then in the second
stage, we consider the problem of simultaneously estimating
the input sparse signal and also the linear system, known
as blind system identification, and propose a novel iterative
algorithm for that setup. We will show that, based on our
numerical simulations, the solution to the second problem is
normally convergent.

System Identification with Known Input Signal

For this scenario, as shown on Figure 1, a two-channel
system is proposed for sampling the input sparse signal with
and without the unknown system. In the figure, g(x) represents
the known input signal, ψ(x) represents the unknown system
to be identified, φ(x) represents the pre-defined sampling
kernel which we assume to be purely imaginary E-splines [2]
in both channels, T represents the sampling interval and sk
represent the samples. In the first channel, the input signal is

Fig. 1. System identification setup with known input signal

directly sampled with the kernel φ(x) and given the obtained
samples which we denote with sSIG

k , the exponential moments
of the input signal, denoted with τSIG

m , are calculated [1].
In the second channel, the same input signal is fed through
the unknown system ψ(x) and then sampled with the same
sampling kernel. Same as in the first channel, given the
samples sSY S

k , the exponential moments τSY S
m are calculated.

With purely imaginary E-spline sampling kernel employed,
by dividing the exponential moments obtained from the two
channels, it can be shown that the Fourier transform of the
unknown function can be obtained. Given the partial Fourier
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transform of the unknown system, there will be an inverse
problem to solve for the unknown parameters of the unknown
system. In our work, we show for cases such as finite impulse
response (FIR) filters (e.g. acoustic room impulse response
estimation or line echo cancelation), B-splines (e.g. camera
lens calibration) and E-splines (e.g. estimation of the electronic
components of a finite order electronic circuit), we can solve
the above inverse problem and identify the system. It should
be pointed out that the above method works regardless of the
structure of the input signal.

Blind System Identification

When both the signal and the system are unknown, the
previous solution cannot be used directly and the problem is
in general more involved. However, a recursive version of the
discussed method can be utilized to estimate both the input
sparse signal and the unknown system.
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Fig. 2. The setup proposed for recursive estimation

In our work we assume that the input sparse signal is
a stream of Diracs with unknown locations and amplitudes.
As shown in Figure 2(a), the unknown input signal is fed
to the unknown system ψ(x) and then is sampled with our
pre-specified purely imaginary E-spline sampling kernel. The
annihilating filter method [3], [1] is directly applied to the ex-
ponential moments τ0m and an initial estimate of the input sig-
nal is obtained, denoted as ĝ(x) (Figure 2(b)). The estimated
signal ĝ(x) is recursively fed back to sampling kernel and its
corresponding updated exponential moments are calculated at
each recursion, denoted with τupdm . By dividing the updated
exponential moments τupdm and the initial measurements τ0m,
an estimate of the Fourier transform of the unknown system is
obtained. From this estimate, the unknown parameters of the
unknown system are estimated and the measurements τupdm

are re-calculated. Our empirical results show that by applying
the above method recursively, the estimations converge to the
actual input signal g(x) and the unknown function ψ(x).
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